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S U M M A R Y  
It is shown that for a certain class of wings with subsonic, curved leading edges, in linearized supersonic flow, the 
perturbation potential can be expanded in terms of functions which are solutions of homogeneous flow problems. 
If the boundary conditions on the wing are of polynomial form, the homogeneous flow problems are elementary. 
Some calculations are carried out for flat wings with gothic and ogee planforms under incidence. 

1, Introduction 

In linearized supersonic flow theory analytic solutions are known for the pressure distribution 
on wings with straight subsonic leading edges. Solutions of very general and elegant form are 
given by conical and so-called quasi-conical flow theory. P. Germain [-1] has defined homogene- 
ous flows of order n as flows for which the perturbation potential ~0(x, y, z) is a homogeneous 
function of order n in the variables x, y and z. Conical flow then, is a flow homogeneous of 
order one and quasi-conical flow is a flow of higher order of homogeneity or a superposition of 
such flows for several n. If the leading edges of the wings considered are curved as in the case of 
gothic and ogee planforms, the flow can in general not be represented as a superposition of 
homogeneous flows. One possible solution of this problem was given by Adams and Sears [5] 
in an extension of slender body theory to a not-so-slender body theory by introducing expan- 
sions in terms of a slenderness parameter (fiSt) 2. The first term corresponds with the slender 
body theory solution. The first and second terms are the not-so-slender body theory solution. 
The success of the not-so-slender body theory will depend on the value of the slenderness 
parameter. The calculations carried out by Squire I-6] confirm this and indicate further that the 
range of applicability of the not-so-slender theory depends moreover on the magnitude of the 
higher streamwise derivatives of the spanwise load, in such a way that this range decreases with 
increasing magnitude of these derivatives. For moderate.values of the slenderness parameter, 
improvement can be expected by including higher order terms. It is less evident however, that 
the restrictions with respect to the magnitude of the higher streamwise derivatives should be 
similarly relieved in the same process. For ogee planforms with a value for (fiSt) 2 exceeding 
(0.3) 2 and for pitching delta wings with a value of(fiSt) e exceeding, say (0.4) 2 the not-so-slender 
theory is inaccurate. At least one more term is required to obtain better results. 

Many planforms which are of interest from a practical point of view differ only slightly from 
delta planforms for which (fiSt) 2 will not be small at cruising conditions. It would seem natural 
therefore to connect the flow around these wings with the flows around delta wings rather than 
with slender body approximations. 

E. Carafoli has given an expression for the disturbance potential in the plane of the wing for 
a flat wing, with slightly curved leading edges, under incidence and satisfying moreover certain 
necessary limiting conditions. The parameter occurring in the conical solution is replaced by 
a function depending only on the streamwise variable x and chosen in such a way that the 
solution is correct for straight leading edges and also for slender wings with curved leading 
edges. The functions obtained in this way do not satisfy the differential equation. By doing so 
one may hope to anticipate certain trends but cannot expect to predict correctly the magnitude 
of the variations which occur when the wing is not slender. 
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156 R .  C o e n e  

In the present paper another method for the same problem is suggested. A class of trans- 
formations is introduced which transform leading edges of the form[y] = A x  + BX2-1 - C x  3 . . .  

into [y'f = A x ' .  

Under certain conditions we can satisfy the transformed differential equation and the trans- 
formed boundary conditions in terms of homogeneous functions which are solutions of 
problems in homogeneous flow theory. The order of homogeneity included can be associated 
with the order of approximation desired. A comparison is made between a first approximation 
for a flat gothic wing and the corresponding results obtained by Squire [-6] and the expression 
given by Carafoli [7, 8]. 

2. Formulation of the Problem 

In linearized supersonic potential flow the perturbation velocity potential must satisfy 

f12 q)xx - q ) y y -  q?zz = 0 

with/~z = M z _ 1, M being the Mach number of the oncoming flow in the x-direction. 

(2.1) 

Figure 2.1 
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Equation (2.1) can be normalized by taking 

x 
xl = ~  ; Yl=Y ; z l = z .  

Dropping the subscripts we have for the perturbation potential 

~oxx- ~Oyy - cp= = O. (2.2) 

We take q~ = 0 at the Mach cone through the origin. As usual the boundary conditions at the 
surface of the wing will be applied at the projection of the wing on the plane z = 0. The wings 
considered will be symmetric with respect to the x-axis and the subsonic leading edges will be 
described by 

J yl  = A x  + B x  z + C x  3 + . . . .  (2.3) 

It can be shown that in linearized airfoil theory the flow around a wing can be decomposed into 
two parts which can be treated independently. The first can be connected with a source dis- 
tribution in the plane of the wing and is often referred to as the thickness case ; the perturbation 
potential will be an even function in z. The second part can be connected with a doublet 
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distribution in the plane of the wing and it is often called the lifting case ; the perturbation 
potential is an uneven function in z. 

In both cases we can distinguish two types of problems, the direct and inverse problems. 
(i) The direct problem consists of finding ~o x at z = 0, which is proportional to the pressure 

perturbation at the wing-surface, for given q)z at z = 0, the latter being proportional to the 
local slope of the wing surface in the x-direction. 

(ii) The inverse or indirect problem consists of finding qL~ at z = 0 and thereby a wing-surface 
that will sustain a prescribed pressure disturbance at z = 0. 

In the direct thickness case and in the indirect lifting case the problem can be reduced to the 
evaluation of a double integral. The solution of a direct lifting problem and an inverse thickness 
problem will, in general, require the solution of an integral equation. 

3. The Transformations 

We introduce the variables x', y' and z' by 

X' = X + ~ ,  apq r x p yq z r . 
p + q + r = 2  

y' = y + ~ bpqr x p yq z r . 
p+q+r=2 

Z: = Z + ~ Cpq r X p yq  z r . 
p+q+r=2 

p + q + r = 2, 3 . . . .  ; p, q and r are non-negative integers. 
In order to retain, in some degree, the geometry of the flow-field in the xyz-space, when 

transforming to the x'y'z '-space, we require that x' is invariant when y and z change sign and 
that y' and z' change sign with y and z respectively without changing their values when z and y, 
respectively, change sign. 

For  the transformations this implies: 
(i) In x' no odd power of y and z occur. 
(ii) In y' only terms with odd powers of y occur, but no odd powers of z. 
(iii) In z' only terms with odd powers of z occur, but no odd powers of y. 
In the region of interest x and x' will remain positive; in x', y' and z' odd and even powers of 

x may occur. 
Now we can write, with terms up to the third degree included : 

X' = x + a 2 o o  X2 + a o 2 o Y Z + a o o z Z 2 - - } - - } - a 3 o o X 3 + a 1 2 o x y Z + a l o 2 x z 2 . . .  

y' = y + bi i oxy + b2 i ox2 y + bo30y3 + bo lzyz2 + ... 

z' = z +  Clo i xz  + c201 xZz + c02iy2z + c003 z3 + . . . .  (3.1) 

The Jacobian of this transformation is one at the origin and is positive in a neighbourhood 
of the origin. In this region we find for the inverse transformation, also up to the third degree 
terms : 

x = x ' -  a200 x'2 - ao20Y '2 - aoo 2 z '2 + (2a~oo - a300 ) x '3 + 

+ {2ao2o (a2oo + b l l  o ) -  al20} x'Y '2 + {2%02 (a200 + ci o i ) -  a,02} x'z'Z.. .  

y = y ' - b i i o X ' y ' + ( b 2 1 0 + a 2 0 0 b i i o - b z l o ) x ' 2 y ' + ( a o 2 0 b l l o - b o a o ) y ' 3 +  

+ (ao02 bi ,0 - bol2)Y 'z'2 + . . .  

Z Z '  , , 2 = --Cl0iX Z "}'(Cl0 t +a200c101-c20 t )X '2Z ' + (a020c101-c021)y'2Z'-{ - 

+ (ao02 Clol - c003) Z'3 + . . . .  (3.2) 
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An interesting property of these transformations is the possibility to transform leading edges 
of polynomial form ] y l = A x + B x Z + C x 3 + . . .  into l y ' l=Ax '+B'x 'Z+C'x '3+. . ,  in which 
B', C', ... can be made successively equal to zero by making a suitable choice of the parameters 
in the transformations: 

The coefficients of the second degree terms must satisfy 

B+ Abl lo  = Aa200 + A3 ao20 (3.3) 

in order to make B ' =  0. 
The coefficients of the third degree terms must satisfy 

C + Bbllo + Abzlo + A3 bo3o = 2A2 Bao2o + Aa3oo + A3 a12o (3.4) 

in order to make C '=  0. 
We can straighten the leading edge to order p by adapting the coefficients of terms up to 

degree p in the transformations. In a region not too far from the origin we now write for the 
leading edges : 

ly'l  = A x ' .  (3.5) 

In this paper terms up to the third degree in the transformations will be included. This will 
make it possible to straighten a leading edge, represented by a third degree polynomial 
J yJ = Ax + Bx z + Cx 3 up to the third order. Thus the complicated wing planform is transformed 
into a simpler, conical, planform up to the third order. The transformed differential equation 
for the perturbation potential, however, becomes very complicated: 

(Px'x'g l q- (P y'y'g2 q- q~ z' z'g3 + 2(Px'y'g 4 "t- 2q2x, z,g 5 + 2(py, z,g 6 "-}- qg x, g 7 + (Py'g8 q- qg z'g9 = 0. (3.6) 

The functions g are given in the appendix. 
Equation (3.6) is linear in q~ and admits solutions of the form 

~o = (1 + a~o) o x ' +  a~)oo x '2 + ~o2oyN~") , ,2 + a~)oz z'2 + . . . )  q~. (3.7) 

and hence linear combinations of such solutions for different n, with q~, denoting a function 
homogeneous of order n in x', y' and z'. 

If we substitute (3.7) in (3.6) and arrange the terms according to increasing orders of homo- 
geneity it is found that the following equations must be satisfied: 
for terms homogeneous of order ( n -  2): 

~o,~,x,-  ~o , r ,y , -  ~o,~,z, = 0 (3.8) 

for terms homogeneous of order ( n -  1): 

q~,x,~,(4a2oo +e~)oo)X'-(p,/y,(Zbtlo + (") , Cqoo)X - ~o,~,z,(2Clo ~ + ~o) o)X'+ 

+ 2(p,~,,, (bllo - 2ao2o)Y'+ 2~%~,z, (c'102 - 2aoo2)z'+ 

+ ~o,~, (2a2oo- 2ao2o - 2a0oe + 2~)oo) = 0 (3.9) 

for terms homogeneous of order (n): 

q~,~'~'hl + r + q~,z,~,h3 + 2(p,~,y,h4 + 2(p,~,~, h s + 2(p.r,~,h 6 + 

-}- ~Onx, h 7 -q- q3ny, h 8 + ~Onz, h 9 -t- q~.hlo = O. (3.10) 

The functions h are given in the appendix. 
If the equation (3.8) for terms of order ( n - 2 )  is satisfied, the equation (3.9) for terms of order 

( n -  1) can be satisfied by making a suitable choice of the parameters occurring in the coefficients 
of the derivatives. ~, is homogeneous of order n so we have: 

n~o, = x' ~o,~, + y' ~o,y, + z' ~o,~, (3.11) 

and by differentiation with respect to x': 

(n -1)%x,  = x'~o,~,~,+y'q~,~,r,+z'q~,~,~,. (3.12) 
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For n # 1 we can write 

1 / t 

l )  + y + z 

so that the equation for terms homogeneous of order ( n -  1) becomes : 

{ 4 a z o o + O q o o  + ~ )  . ; x +  
@nx'x" (n) 2 a 2 o o - -  2 a o 2 o - -  2aoo2 + 2a~)oo) , . 

(n)  , 
- g ~  -r ~iooj~• ~..,+ 

~(n) ) 

+2(P,~, r, bi lo-2ao2o + az~176176176176176176176 1) 

f 
+2~p.:.,~, f c l o l - 2 a o o  2 + 

If we now satisfy the equations 

~(n) ) 
"2~176176176176176176176 I ( n - x )  z'---- 0. 

,~ • ,in) 
4a2o o + c~)oo + 2 a 2 ~ 1 7 6  - -  a020 - -  ~002 T ~100 = 2 b l  lo  + cq oo(") 

( n - i )  

(n) 2bl lo+aloo  = 2 c l o 1 + ~ o ) o  

(3.13) 

(3.14) 

,~ . ~,(n) 
a200 - -  a020 - -  ~,002 - -  ~1 oo 

b ' l ~ 1 7 6 1 7 6  + ( n - l )  = 0 (3.15) 

,~ • ~(n) 
C l o l - - 2 a o o  2 + a 2 ~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6  = 0 (3.16) (n-l) 

it follows that the equation (3.9) for terms homogeneous of order (n - 1) is satisfied by ~o, When 
% is a homogeneous solution of order n to equation (3.8). 

The equations (3.13), (3.14), (3.15) and (3.16) are equivalent to 

ao2o = aoo2 (3.17) 

a 2 o o + a o 2 o  = b l l o  (3.18) 

b11o = C,ol (3.19) 

= 1 ) . o 2 o - n a 2 o o  �9 ( 3 . 2 0 )  

For n =  1 equation (3.12) becomes 

x '  q~ix,x,+ y'  qglx,y,+ z' qgix,z, = O . 

It is easily verified that we satisfy equation (3.9) for terms of zero order of homogeneity if 
we satisfy (3.17), (3.18) and (3.19) while (3.20) becomes 

c((i) 
1 0 0  ~ 2ao2o--a2oo 

so that equations (3.17), (3.18), (3.19) and (3.20) must be satisfied for all n =  1, 2, 3 . . . . .  It is 
important to note that these equations can be satisfied with the parameters of the transforma- 
tions independents of n. Summarizing it is seen that the six coefficients a2oo, ao2o, aoo2, bl lo, 
Clol and ~ioo~'(') must satisfy five independent equations (3.3), (3.17), (3.18), (3.19) and (3.20). 

From (3.3) and (3.18) we obtain 

B 
ao2 0 - -  A 3 _ A  (3.21) 

For terms homogeneous of order n we have : 
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__ l ) x t ~ O n x , ~ _  - , 2  . . . .  } (n ' x, ~ , , x ,~ ,+xy%~,y+XZ~p,~ ,~ ,  

( n - 1 ) y  = x y y y'z'  
t ! ! t t t2  (n -1 )z  q~,~, = x z q~,~,z,+ y z q~,y,z, + Z q~.~,~, 

(3.22) 

Using relations (3.11) and (3.22) successively the equation (3.10)for terms homogeneous of 
order (n) is reduced to an equation in which only the six second derivatives of q~, occur for 
n # l .  

For n = 1, ~0, can be eliminated by (3.11) for n =  1 and the cross-derivatives by: 

2x'y '  qh~,y, = z '2 q~i~'z' - x ' 2 q ~ l x ' x ' - y ' 2 ( , O l y ' y  " } 

2X'Z' qh~,z, y,2 Cply,y" Z'2 ~Pl~'z' -- X'2 ~01~'~" ~ (3.23) 
y t t2  2y z ~oly, ~, =x '2qhx ,x  , - y ' Z q h / y ,  - z  q~lz'~' . J  

If % is a solution of equation (3.8) the equation (3.10) for terms homogeneous of order n is 
also satisfied by q~, provided six equations independent of n are satisfied, for the nine coefficients 
of the third degree terms in the transformations : 

a 1 0 2 - b 0 1 2  = a220+a200a020 
2 

a 1 2 o - b o 3 0  = ao2o+a2ooao2o 

b21o _ 2 a3oo = %20 + a2oo ao2o (3.24) 

b210 = r  

bo3 o ---- C o 2 1  

bol  2 = Coo 3 

and three equations for the three coefficients ~200,"(") ~020~'(") and ~o02,"t") which for n = 1 simplify to" 

~(\) 2 2 ) 
2o0 = 3ao2o- -  4a2oo ao2o + 2a2oo --  aaoo 

( (1) 2 
2~020 2a2o 0 ao20 -- ao20 --  2bo3 o (3.25) 

~(1) J ~oo2 = 2a2oo a o 2 o -  a22o- 2Coo3 

From equation (3.4) and the second, third and fifth equations of (3.24) it follows that A, B and 
C must satisfy 

2AB 2 
' C - A2 _ 1 .  (3.26) 

By restricting ourselves to solutions of the form (3.7) we restrict ourselves to leading edges of 
polynomial form for which the first three coefficients satisfy (3.26). For subsonic leading edges 
we have 0<  A < 1 so that C will not be positive while B can be positive, negative and zero. 
B = 0 gives C = 0. Negative B gives gothic planforms if we include second degree terms in the 
leading edge equation and in the transformations and also if we include third degree terms. 
For positive B we find concave planforms if we include second degree terms and concave and 
ogee planforms if we include third degree terms. It must be assumed that we are not too far 
from the origin so that higher degree terms can indeed be neglected with respect to those 
retained. 

The degree of the terms included can also be connected with a desired order of approximation. 
If we take B small of order e, the coefficients of second degree terms in the transformations are 
small of order e. C and the coefficients of third degree terms in the transformations will be small 
of order (e) 2. From the transformed differential equation (3.6) it is noticed that in the coefficients 
of the second derivatives terms of degree one are of order e and terms of degree two are of order 
(e) 2. In the coefficients of first derivatives, terms of degree zero are of order e and terms of degree 
one are of order (e) 2. 
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Arrang ing  the te rms in the t r ans formed  equa t ion  according to orders  of  e leads to equat ions  
for the coefficients in the t r ans format ions  which are the same as those ob ta ined  when we 
substi tute solutions of  the fo rm (3.7) and ar range  according to orders of  homogenei ty .  

4. The Boundary Conditions 

I t  is easily verified tha t  equat ions  (3.18), (3.19) and  (3.24) imply tha t  the characteris t ic  cone 
x2 = y2 + z2 t ransforms into x '2 = y,Z + z,2 up to the order  considered so tha t  q) = 0 at x 2 = y2 + z 2 
becomes  ~o=0 at x'2=y'2+z'2. 

Outside the project ion of the wing at  z = 0  we have q ~ = 0  in the lifting case because q~x is 
cont inuous  and uneven in z;  in the thickness-case we have  q0 z-- 0 at z - -  0 outside the project ion 
of the wing. 

In  a direct p rob l em ~0~ is given at the project ion of the wing on z = 0. 

Ox 0y 0z 
q)~' = q~xffiz' + q)r~z' + ~~ ~z '  (4.1) 

F o r  z = 0 we have z' = 0, Ox/&' = 0 and  Oy/&' = 0 so : 

(19z,(z,=O) = ~0z(z =0) { 1 - Ct01 X, _k(Clot_kaeooCtol_c20t)x,2+(ao20Clol_Co2t)y,2+...}2 
(4.2) 

In  an inverse p rob l em we k n o w  ~p~ at  z = 0 

0x 0y az (4.3) cp~, = ~o~ ~ + % ~ + p~ & , .  

At  z = 0 we have z '=  0 and &/Ox'= 0 so we can write:  

q)~'(~' =o) = (Px{z =o){ 1 - 2azooX'+ 3 (2a2oo -  a3oo) x'2 + [2ao2o(a2oo + bt l o ) -  a t  zo]y '2 + . . . }  

+q~y{==o) { -b t toy '  + Z(b~to +azoobtlo-b21o]x'y'...} . (4.4) 

In  a lifting case q~x is zero at z = 0 outside the project ion of the wing so we can write : 

q)(z=0)  = (p~dx (4.5) 
leading edge 

and we can calculate 

f ~ q)~dx. (4.6) 
@y(z=O) = ~ y  leading edge 

In  the inverse thickness case q) and  % do not  follow directly f rom q)~(z=O). F r o m  (4.2) one 
sees tha t  if qo~(, = o) can be d e c o m p o s e d  into  te rms  with different orders  of  homogene i ty  this will 
also be the case for ~o~,(2, = o). A t e rm h o m o g e n e o u s  of order  p in q~,(~ =o) in the variables  x and y 
will give te rms h o m o g e n e o u s  of  orders  p, p + 1, p + 2 . . . .  for q)~,(z,= o) in the variables  x '  and  y'. 

F r o m  (4.4) one sees tha t  if (Px(~=o) can be d e c o m p o s e d  into te rms with different orders  of  
homogene i ty  this will also be the case for ~o~,(~,= o) p rovided  q~rcz=O) can also be d e c o m p o s e d  
in this way (or if we take  b ~ o = 0  and b2 to=0 ) .  

5. Applications 

We shall now carry  out  some calculations,  first retaining only the first and second degree te rms 
in the t ransformat ions ,  for a flat wing under  incidence with leading edges lY l=Ax+Bx 2. 
The  b o u n d a r y  condit ions on the wing become :  

q~,(z,=O) = ~Oz~=o)(1-Ctol X') . 

We write q0~(~ = o) = - Uoo c~ = - Wo so tha t  
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~o~,~z, =o~ = -Wo+WoClolX' �9 (5.1) 

The first part is homogeneous of order zero, the second part is homogeneous of order one. 
Up to the order considered we can write for the solution: 

(0 = ( /91(1+ 0{100(1) X,)_}_ ~02 . (5.2) 

In this expression (p 1 and q~2 are homogeneous of degree one and two respectively and both are 
solutions of equation (3.8). From equation (3.20) we have for n = 1 : 

~ (5.3) 100 = 2 a o 2 o - - a 2 o o .  

From equation (5.2) follows 

(#z, = q~lz'( 1 + ~ o X ' )  + ~PZz' �9 (5.4) 

From (3.18), (3.19), (5.1), (5.3) and (5.4)we then find: 

qhz'~='=0) = -Wo (5.6) 

and 

~P22,(z,= o)= 3ao2oWoX'. (5.7) 

The problem for qh is equivalent to the problem of the flow around a flat delta wing under 
incidence. Its solution is well known: 

WOx/AZx,2 y, 2 (5.8) (Pl(~'= +o) = ~7 

with E' representing the complete elliptic integral of the second kind with modulus 
The problem for q)2 is equivalent to the problem of the flow around a delta wing due to 

a pitching motion or the problem of a flow around a wing with a parabolic warp in the x' 
direction, q~2 can be calculated by the method indicated by Fenain [-3]. 
The solution is: 

~-3 Wo(1 -A2)ao2o x , / A 2 x , 2  ,2 (5.9) 
(P2(z'=+o) ~ -  E , ( I _ 2 A Z ) + A Z K  , x~ - Y  

in which K' is the complete elliptic integral of the first kind with modulus ~ A 2. 
For the solution on the wing we can now write 

Wo 3 ( l - A 2 )  Woao2o ,7 
q~(z'= +0) = ~7- {l+(2aoio-azoo)X'}  - E , ( I _ 2 A 2 ) + A 2 K ,  XJ ~ / A Z x ' 2 - y  '2. (5.10) 

For convenience the parameter a2oo, which is still free, is now so chosen that ( A e x ' 2 - y  '2) 
transforms into (Ax + Bx2) 2 _y2  up to the order considered. By equating terms up to the third 
degree we find 

B 
a2o o = ~ .  (5.11) 

The perturbation potential on the wing now becomes: 

~p(z= + 0 ) =  Wox/ (Ax+Bxe )2 -y  2 [ 1 2 E ' A 3 - 4 E ' A + ( 3 - A 2 ) A K  ' -] 
~,, + Bx E,(A 2_  1){E'(1 ~ } - _ ]  " (5.12) 

We have lim E ' =  1 and lim A K ' =  0 so that for small A and not too large Bx we can write, 
A~O A~O 

up to the order considered: 

(p = Wox/(Ax + B x2 )2 -y  2 . (5.13) 
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This is the well known slender body solution for a flat wing with leading edges ]yi= Ax + Bx 2. 
This solution is accurate for small A and small Bx. In solution (5.12) the restriction with respect 
to A is removed. Carafoli's corresponding solution for the case in which no restriction is 
imposed on A except 0 < A < 1 is 

(z = + o) = ~ ,/(Ax + B~) ~ -  y2. (5.14) 

f 
~/2 

w i t h e ' =  x/1-{1-(A+Bx)2)sin2q~dcp. 
dO 

In the elliptic integral occurring in the conical solution the constant A has been, rather 

arbitrarily, replaced by the variable (A + Bx). The expression x/(Ax + Bx2) 2 -  y2 is such that 
this part is the correct solution in the slender body case and in the conical case, i.e. B = 0. The 
elliptic integral is the correct coefficient for a straight leading edge and near the origin for 
a curved leading edge, when Bx < A. 

For small Bx we can write 

1 1 A K ' (x / i -A2) - -E ' (  lx/-i-C~-A 2) 
+ B x - -  = 

E'(~-(A+Bx) 2) E'(,/1-A~) A2-1 {E ' ( , /U- -Z) )  2 

1 
_ _  + Bxp.  

The factor p has been plotted against A and is compared to the corresponding factor as cal- 
culated from (5.12). The factors are the same for A = 0  and A-- 1 but for A =0.1 they differ by 
a factor 2.5. 

- 0 , 4  

| Present opproximotion -0 ,2  

- 0 , 8  

P 

-0 ,6  

0 
o 03 o',~ o~ o,~ o) A (0 

Figure 5.1 

The solution (5.12) is easily generalized to other Mach numbers. With fl = x//M ~ - 1 we find: 

(p(z= + 0 ) =  Wox/(Ax + Bx2)2-y 2 I F  
2E' fl3 A 3 ~ 4E~ A ~  ~ (3 ~ ~ ~Z) A ~ K  ~ 

+ Bflx (A2fi2_ 1)E'{E'(1-2A2fl2)+A2fiZK'}J 
(5.15) 

in which E' and K' now have modulus ~ f 1 2 .  
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The coefficient 

2E'/33 A 3 - 4E'A~+ (3 -AZ~2)  A ~K  ' 
(A2 fl 2 -  1)E' {E' ( 1 - 2 A Z ~ ) + A 2 ~ 2 K  ' } 

is found from fig. 5.1 by taking A/~ for A. The pressure perturbation follows from p '= -pUq~x. 
Squire [6] has plotted the chordwise variation of the spanwise load on several wings for 

different Mach-numbers as calculated by the not-so-slender body theory. 
To compare the results of the not-so-slender body theory, of Carafoli's approximation and 

of the present first approximation it seems useful to plot the chordwise variation of load for a 
gothic wing with leading edges y =  Srg(x). For/~ = 1 we have Sr = 0.4, g (x)= x (2 -x )  (fig. 5 of 
reference [6]). In our notation we have 

lyl = 0 .Sx  - 0 . 4 x 2  �9 

For f l~0  the three solutions tend to the slender body approximation. We have plotted 

L(x) 
2zc~ 

-~-" i A x  + Bx2 with L (x) 4 -~A~+B~) U--~ ~o~(x, y+O)dy . 

o,2sJ 
L (X) 

2 T~ O~ 0,20- 

0,15- 

0,10- 

0,05- 

IA I "~ ~.~ 
/ /i ~\ 

I / / "  - "~O. \ 
I j.1. [] .... EI-.-~.~ "~'\ \ .  

/ / / / "  [] \ \ 
/ / /"  ~ \ \ 

/ W  ",,,, ",,', 

/ I I  [ ]  CarafoI.i \ \ 
/Y/  \ \  \ 

./~z~ O P r e s e n t  t h e o r y ,  f i r s t  a p p r o x i m a t i o n  \ O 

/ \% 
i | i i 

o,1 o,2 0,3 0.4 0,5 o16 X I;o 

Figure 5.2. Chordwise lift-distribution for a flat wing with leading edges lYl = 0 . 8 x - 0 . 4 x  2 at r =  1. 

At the origin Carafoli's solution and the present solution both coincide with the conical 
solution for a wing with leading edges ]y] = 0.8x. The not-so-slender theory underestimates the 
lift near the origin with 14 %, which explains the difference in slope of the lift distribution curves 
near the origin. 

Comparison with fig. 12 of reference [6] indicates that the present approximation gives an 
accurate prediction of the experimental total lift. Carafoli's solution underestimates the lift, 
as compared to the experimental value, by some 15 %. The not-so-slender theory overestimates 
the lift by 8 %. 

It should be remarked that Carafoli's solution and the present approximation cannot be 
expected to be very accurate beyond say x = 0.3 because the leading edge will differ too much 
from the tangent through the origin. The general trends of the three solutions, however, are 
very similar over the whole wing. 
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One can obtain a second order solution by including third degree terms in the transformations 
and in the equation of the leading edges. We will illustrate this in the following calculation. 

Let us consider a flat wing under incidence with leading edges 

lY[ = A x  + B x 2  + C x 3  �9 

Straightening the leading edges up to the third order gives equations (3.3) and (3.4). 
The solution is written (up to the order considered): 

~0 = ~01 (1-~-~ (1)100 "~'~'• ~,(1)T~2oo~ ..,2 • (5.16) 

in which (ol, q~2 and (P3 are solutions to equation (3.8) and are homogeneous functions of 
orders one, two and three respectively, in the variables x', y' and z'. The coefficients in the 
transformations must satisfy equations (3.17), (3.18), (3.19) and (3.24). The coefficients ~(~o 

~'~1) -'(~) and-(~) follow from and ~1oo"(2) follow from (3.20) for n =  1 and n = 2  respectively. ~2oo, ~o2o %o2 
(3.25). A, B and C must satisfy equation (3.26). 

The boundary conditions at the projection of the wing (z' =0) for (o~, (o 2 and q'3 become: 

~91z, ~ - -  W o 

(P2z' = 3ao2o WoX' 
2 ,2 3 2 12 

~03z ,=  - -  Wo(6ao2o x + ~ a o 2 o Y  ) .  

We require that A 2 x '2 - y,2 transforms into (Ax + Bx 2 + Cx3) 2 - y2 up to the order considered; 
this gives" 

B B 
ao2 0 - -  A a _ A  , a2oo  = ~ .  

2B 2 3B 2 
a3~176 A 2 - 1  ' a 1 2 ~  2(A 2 - 1 )  2. 

The solutions (Pl and ~0 2 are the same as in the previous example. The solution for ~0 3 at 
z'= 0 can be calculated by the method indicated by Fenain [-3]. 

The solution can be written: 

with 

(P3(z'= o) = W o (C20 x '2 + Cog y,2)x/A 2 x,2 _ y,2 (5.17) 

- B  2 ( -24+38A2-10A4)E '+(za -36A2)AZK ' ] 

C 2 ~  2A2(A2-1)2 ( 4 - 1 - ] - ~ + ~ ( ~  K'2 ~ (5.18) 

- B  2 ( - 9 6 + 2 4 4 A 2 - 2 0 A 4 - I 2 A 6 ) E  +(24-18A2+6A4)A4K' |  
C~ 2A2(A2-1) 2 A - - ~ - 1 9 ~ ~ ~ ~  J "  

In the original coordinate system, on the upperside of the wing, we find for the disturbance 
potential : 

B Clo) x 2 ~0= Wox/(Ax-k-Bx2+Cx3)2-y2{Coo-bCloX+ (C20~- ~ --~ 

B C~o)y2} (5.19) -~ ( C o 2  -~ 

1 2E'A a - 4E'A + (3 - A 2) AK' 
with Coo = ~ - ,  Clo = B(A2_ 1)E '{E ' (1-2Ai)+AZK '} 

and C2o and Cog from (5.18). 
By taking the derivative of q, from (5.19) with respect to x we find the pressure distribution 

on the wing (p'= - p  U(ox). 
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6. Concluding Remarks 

We have carried out some calculations for flat wings. In the case of warped wings, the fiat plate 
solutions occur as the incidence-dependent part of the solution. From equation (4.2) it is seen 
that if ~Oz (z = 0) is of polynomial form in x and y, q~, (z' = 0) will be of polynomial form in x' 
and y'. In this case the problem is also reduced to the solution of elementary problems in 
homogeneous flow theory, which are formally equivalent to the problems we have to solve 
for a flat wing. A term of degree (n -1)  will lead to elementary problems of orders n, n +  1, 
n + 2 . . . . .  If ~p~ (z = 0) includes terms of the form x ("- ~)f(y/x), q~, (z' = 0) will include terms of 
the form x'("-x+v)gv(y'/x'), with p=0,  1, 2 . . . .  and such boundary conditions lead to non- 
elementary homogeneous flow problems of order (n + p). From the expressions for the distur- 
bance potential it is easy to calculate the pressure distribution on a class of flat wings. From 
the strength of the singularity at the leading edge we find at once the variation of the suction 
force along the leading edge. 

Some further calculations seem to indicate that the present results remain probably accurate 
at a larger distance from the origin in case B is negative (gothic planforms) than in case B is 
positive. We intend to come back to this point in a future communication. 
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Appendix 

The Functions O and h 

The functions g in formula (3.6) are, up to the order considered: 

(ax, 2 (0x, 2 
g l =  \ ~ x /  \ ~ y J  - \ O z ]  = l+4a2~176176176 

+ (2a12o 2 '" , 2 - -  2 ,2  - 4ao2o- 4a2ooao2o)Y -1- (2alo2- 4aoo2- 4a2ooaoo2)Z ... 

g2= \Ox]  - \ ~ y y ]  \ ~zJ  = - l - 2 b l l ~ 1 7 6 1 7 6 1 7 6 1 7 6  b21o)X -r 

+ (2ao2ob~ao+b2io-6bo3o)y'2+(2aoo2b~to-2bo~z)z'2... 

7 
g 3 = \ O x ]  - \ O y J  \ O z ]  = - l - 2 c l ~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6  

+ (2ao2o e~o~ - 2Co2~)y '2 + (2aoo2 C~o~ + C~o~ - 6Coo3)Z'2... 

Ox' (?y' ~x' By"_ Ox' ~y' 
g* = ~x "0~ - Oy " Oy ~---~" Oz - (blx~176176 

+ (2a2oob~ ~ o + 2b2 ~o - 2a~ 20 - b2~ o)x'y'... 

OX' ~z' OX' Oz' OX' az' 
g s =  c~x'c3x c3y c3y c3z c~z (c '~176176 

2, r t 
+ (2a2ooCxot+2c2ol-2alo2-clo1)x z ... 

~y' ~z' ~y' ~z' ~y' ~z' 
g6 = O X ' ~  --  ~ y  Oy OZ OZ (bil~176176176 
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~2 X' ~2 X' ~2 X, 

9 7 -  Ox z Oy2 ~z ~ - 2 ( a z o o - a o 2 o - a o o z ) + ( 6 a 3 o o - 2 a a 2 o - 2 a a o z ) X ' . . .  

~ 8 -  ~X 2 r 2 t~Z2 -- ( 2 b 2 i o - 6 b o 3 o - 2 b o i 2 ) Y ' . . .  

~2 z' ~2 z' OZz, 
g9 = OX 2 63y2 tgZ2 -- (2ezo1--2Co21--6Coo3)Z' . . .  

T h e  f u n c t i o n s  h i n  f o r m u l a  (3.10) a r e :  

h i  = (6a3oo (") (.) ,2 2 (.) ,2 + ~ 2 o o + 4 a 2 o o ~ l o o ) X  + ( 2 a i 2 o - 4 a o 2 o - 4 a z o o a o z o + % z o ) y  + 

+ ( 2 a l  o2 - 4a2o2 - 4a2oo aoo2 + ~)o 2 ) z ' 2 .  

2 (n) 
ha = (2a2oo b110 - b l  lo - 2 b 2 i o  - 2 b l  l o e i o o  - a~)oo) x '2 + 

+ (2%20 b i l  o q- b~Z*o - 6bo3o - ~)2 o)y,2 + (2aoo2 b ,~o  - 2boa 2 - e~)o2)z'Z. 

9,~ ,,,(n) ,,,(n) ~ . / 2  h3 = (2a2ooCioi-C2o1-2C2o I - ,~ ,~1o1~1oo-~2oo1-~  -? 

+ (2ao2o Cio i  - 2 % 2 ,  - ct~2 ) o)Y '2 + (2aooz c101 -[- c 2  O1 - -  ~ ) 0 2  - -  6Coo3)z '2 .  

h4 = (2a2oobllo+2b2~o 2 - 2 a t z o - b l t o + b l  ~(") ")'~ ~(") ~ " ' "  10~100- - -~020~1001  -~ y �9 

h5 = ( 2 a 2 o o C i o l + 2 C 2 o l - 2 a l o 2 - C 2 o i ' P  "(") 2aoo2a~)oo)X' Z ' ~ L, IO1 ~,10 0 - -  �9 

h6 = ( b i l o e l o l -  2 C o 2 i - 2 b o i 2 ) y ' z ' .  

_ (n) (n) (n) 
h 7 -  (6a3oo-2a12o-2a lo2+lOa2ooCqoo+4~2oo-2aoeoa to  o - 2aoo2 cq oo)X(") , .  

ha = (2b21o (") (") (") ' - -  6bo3o - 2bo12 -4C(o2o + 2bi x o C q o o -  4ao2oa ioo )Y  �9 

h9 = (n) (2ezo ~ - 2Co z ~ - 6%03  - 4 % o  z (") (") ' + 2 C l o l ~ l o  o -  4aoo~Cqoo) z . 

hlo toN(n)  o N ( n )  "),v(n) ~. Or* N(n) (n) (n) = 2ao2o~1o o - - 2 a o o 2 a l o o )  �9 ~v-'~'200 - -  ~ 0 2 0  - -  "~"002 ~ ~'~2 O0 ~'1 O0 - -  
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